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Abstract
The basic one-dimensional vibronic problem has been solved exactly in
an analytical form for degenerate configurations. The solution using the
intermediate p-representation and the Heun functions expansion on the Gauss
basis set has indicated the existence of dynamic symmetry. The direct solution
in x-representation has specified an effective method for the calculation of
vibronic problems. Conical intersection parameters have been obtained and
analyzed for a few lower levels.

PACS numbers: 03.65.Nk, 03.65.Vf, 34.10.+x

1. Introduction

The intersection of levels stays among basic problems of quantum mechanics for a long
time. This problem is a direct consequence of the dependence of the Schrödinger equation
on the parameters and therefore it occurs in various fields of quantum physics. In particular,
the amplitude of the external field can be considered as the parameter in the laser molecular
dynamics, the amplitude of interaction is the parameter for the spin-boson problem, the nuclear
coordinates are the parameters for electronic dynamics of molecular systems.

The intersections of molecular electronic potentials are the most studied. These
intersections are subjected to the famous Wigner–Neuman theorem for the adiabatic potentials
of the same symmetry [1] and form a multi-sheeted nuclear potential surface with seams at
the degenerate configurations. The conventional approach to this problem is comprehensively
represented in [2, 3].

The degeneracy of molecular levels is induced by the geometric symmetry of nuclear
configuration (see, for example [4–7]) or by the dynamic symmetry owing to the characteristic
separation of variables [8–11]. Many authors have studied the geometric degeneracy, but
the dynamic degeneracy has been discussed much rarely and sometimes it is considered as
‘accidental’. The most known examples of the dynamic symmetry have been found in exactly
solvable quantum-mechanical models [8–12], but the exact analytical solutions to vibronic
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equations remain unknown even for the simplest models. The impressive Moffitt–Thorson
‘nodal’ intersection of vibronic levels [13] is, probably, the example of such a type. However,
its analytical reconstruction given by Judd [14] is approximate only.

Undoubtedly, the geometry of intersections of vibronic levels satisfies the general
principles of conical intersections [15], but the relevant analytical confirmations are still
lacking since corresponding calculations must be based on exact results for the dynamics in
degenerate configurations.

In this work, we present the exact solution for the simplest vibronic model in an analytical
form. The paper is organized as follows: section 2 includes the mathematical formulation of
the problem and its p-representation reducing to the Heun equation. This equation is solved
in section 3 where the spectrum and the conditions for the existence of degenerate solutions
are found. Section 4 deals with the coordinate representation and section 5 with the geometry
of vibronic surfaces in the vicinity of lower intersections. Section 6 summarizes the results.

2. Formulation of the problem: the p-representation

The basic one-dimensional vibronic model is defined by the following Schrödinger system of
equations (see, for example [16]):

− h̄2

2m

d2ψ1

dx2
+

(
m�2x2

2
− F1x

)
ψ1 + V ψ2 = Eψ1,

− h̄2

2m

d2ψ2

dx2
+

(
m�2x2

2
− F2x

)
ψ2 + V ψ1 = Eψ2.

(1)

Introduction of the new variable, functions and parameters

x =
(

h̄

m�

) 1
2

ζ, (2)

ψ = e−ζ 2/2χ, (3)

a, b = (�3mh̄)−
1
2 F1,2, ν = V

h̄�
, ε = E

h̄�
+

1

2
(4)

leads to the equations

1

2

d2χ1

dζ 2
− ζ

dχ1

dζ
+ (aζ + ε − 1) χ1 − νχ2 = 0,

1

2

d2χ2

dζ 2
− ζ

dχ2

dζ
+ (bζ + ε − 1) χ2 − νχ1 = 0.

(5)

We transfer equation (5) into the p-representation by using the contour Fourier transformation

χ1,2(ζ ) =
∫

L

ϕ1,2(p) eipζ dp, (6)

where the complex plane contour L is subjected to the following increment conditions:

ϕ1,2(p) eipζ |L = 0, pϕ1,2(p) eipζ |L = 0. (7)

The amplitudes ϕ1,2(p) satisfy two coupled differential equations of first order

(p + ia)
dϕ1

dp
−

(
p2

2
− ε

)
ϕ1 − νϕ2 = 0,

(p + ib)
dϕ2

dp
−

(
p2

2
− ε

)
ϕ2 − νϕ1 = 0.

(8)
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We define two new functions φ1 and φ2 as follows:

ϕ1 = φ1 exp

(∫
p2/2 − ε

p + ia
dp

)
,

ϕ2 = φ2 exp

(∫
p2/2 − ε

p + ib
dp

)
,

(9)

and obtain the second-order differential equation for the function φ1:

(p + ia)(p + ib)
d2φ1

dp2
+

[
p + ib + i

(
p2

2
− ε

)
(b − a)

]
dφ1

dp
− ν2φ1 = 0. (10)

Transformation from the variable p to the new independent variable z,

p = i[(a − b)z − a], (11)

reduces equation (10) to the confluent Heun equation (see [17])

z(z − 1)
d2

dz2
φ1 + [γ (z − 1) + δz − βz(z − 1)]

d

dz
φ1 + qφ1 = 0 (12)

with parameters

β = −(a − b)2/2, γ = 1 − a2/2 − ε,

δ = ε + b2/2, q = −ν2.
(13)

3. Degenerate solutions

As is already clear in [17], we take the partial solution of equation (10) in the form of the
following Gauss hypergeometric functions expansion:

φ1 =
∑
m

dm 2F1(m,ω − m, γ, z), (14)

where the parameter ω is given by

ω = γ + δ − 1 = b2 − a2

2
. (15)

Substitution of the expansion equation (14) into equation (12) leads to the three-term recurrence
relation for the coefficients dm

Cm−1dm−1 + Bmdm + Am+1dm+1 = 0 (16)

with

Am = −β
m(m − ω) (m − γ )

(2m − ω) (2m − ω − 1)
,

Bm = q + m(m − ω) + β
m(m − ω) (ω − 2γ + 1)

(2m − ω + 1) (2m − ω − 1)
,

Cm = β
m(m − ω)(m − ω + γ )

(2m − ω)(2m − ω + 1)
.

(17)

These coefficients can also be obtained by the confluence procedure in the solution of the
general Heun equation (see [17]). Finally, calculating the integrals in equation (9), we obtain
the amplitude ψ1(ζ ) in the form

ψ1 = e−ζ 2/2
∑
m

dm

∫
L

eβz2/2+a(a−b)z e[a−(a−b)z]ζ zγ−1
2F1(m,ω − m, γ, z) dz. (18)

3
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The solutions of the recurrence relation in equation (16) are specified by two adjacent
coefficients dm. Taking into account the equality A0 = 0, we can put dm = 0 for all negative
m and recast equation (16) for m � 0 in the form

d0 = 1, d1 = −B0/A1, . . . , dm+1 = −(Cm−1dm−1 + Bmdm)/Am+1, . . . . (19)

Employing the two additional conditions,

Ck−1 = 0 (20)

and

det(M) = 0, (21)

where M is a three-diagonal k × k matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 A1

C0 B1 A2

C1 B2

C2 . . .

. . . Ak−3

Bk−3 Ak−2

Ck−3 Bk−2 Ak−1

Ck−2 Bk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

and k is a positive integer, all the coefficients dm with m � k are equal to zero. In this case,
we obtain the accurate solution to equation (12) as a finite sum of k hypergeometric functions.

In consequence of the equalities C0 = 0 and B0 = q �= 0, the condition of equation (21)
can be rewritten in the form

det(M̃) = 0, (23)

where the matrix M̃ is obtained by removing the first row and the first column from matrix
M. The matrix M̃ has dimension (k − 1) × (k − 1). Thus, nontrivial solutions in the form of
equation (14) contain at least two hypergeometric functions:

k � 2. (24)

Equation (20) leads to the energy spectrum

ε = k − b2/2. (25)

Interchanging parameters a and b, we find also the additional levels

ε = k̃ − a2/2. (26)

The spectrum of analytically solvable cases, equations (25) and (26), coincides with the energy
levels of diabatic potentials. Equation (23) defines the eigenvalues of the accessory parameter
q = −ν2.

In particular, for the lowest level of the spectrum in equation (25) we obtain

k = 2, ε = 2 − b2/2, ν2 = 1 − b2 + ab, d1 = (ω − 1 − β)
d0

β
. (27)

The energy level ε = 2 − b2/2 coincides with the first excited vibrational level in the
diabatic potential m�2x2/2 − F2x and the wavefunction equation (14) is a sum of two Gauss
hypergeometric functions

φ1 = 2F1(0, ω, ω − 1, z) +
ω − 1 − β

β
2F1(1, ω − 1, ω − 1, z) = βz − ω + 1

β(z − 1)
. (28)

4



J. Phys. A: Math. Theor. 42 (2009) 285305 V I Osherov and V G Ushakov

For solvable cases, the product zγ−1
2F1(m,ω−m, γ, z) in the integrand of equation (18)

can be simplified as follows (see [18]):

zγ−1
2F1(m,ω − m, γ, z) = zω−k

2F1(m,ω − m,ω + 1 − k, z)

= (−1)l�(p)

�(p + l)

dl

dzl
[z−p(1 − z)−m], (29)

where

p = m + 1 − ω, l = k − 1 − m. (30)

Calculating the integrals in equation (18) by parts, we obtain

ψ1 = ea2−aζ+ζ 2/2
∑
m

dm

(−1)m�(p)

�(p + l)

∫
L

z−p(z − 1)−m dl

dzl
[e−α2(z−z0)

2
] dz, (31)

with

α = a − b

2
, z0 = a − ζ

α
. (32)

Generally, the point z = 0 is the branching point for the integrand in equation (31), and
the only possible integration contour L is a closed contour winding around the pole z = 1.
Calculating the residue in the point z = 1 and using the definition of Hermitian polynomials

Hn(x) = (−1)n ex2 dn

dxn
e−x2

, (33)

we finally find the amplitude ψ1 in the coordinate representation

ψ
(1)
1 = 2π i(−α)k−2 ea2−(a+b)2/4+bζ−ζ 2/2

×
∑
m

dm

(−1)m

�(p + l)

m−1∑
n=0

�(p + n)α−n

�(n + 1)�(m − n)
Hk1

(
ζ − a + b

2

)
, (34)

where

k1 = k − 2 − n. (35)

When the parameter ω is a negative integer or zero, the parameter p is a positive integer
and the additional integration contour winding around the pole z = 0 becomes available. This
contour generates the second, linearly independent physical solution

ψ
(2)
1 = 2π i eaζ−ζ 2/2

∑
m

dm

�(p)

�(p + l)�(m)

p−1∑
n=0

�(m + n)(−α)k−1−ω−n

�(n + 1)�(p − n)
Hk2 (ζ − a) , (36)

where

k2 = k − 1 − ω − n. (37)

The energy level in equation (25), ε = k − b2/2, is degenerate in this case (it coincides with
the level k̃ = k − ω in equation (26)).

The second components, ψ(1)
2 and ψ

(2)
2 , of the diabatic vectors are obtained from ψ

(1)
1 , ψ

(2)
1

and equations (3)–(5) by the formal substitutions

Hk1 ⇒ 1

ν

[
([a − b] ζ + k − 1)Hk1 + 2k1 (b − ζ )Hk1−1 + 2k1(k1 − 1)Hk1−2

]
, (38)

Hk2 ⇒ 1

ν

[(
a2 − b2

2
+ k − 1

)
Hk2 + 2k2 (a − ζ )Hk2−1 + 2k2(k2 − 1)Hk2−2

]
. (39)

This completes the proof that double degeneracy and therefore dynamic symmetry in the basic
vibronic problem, equation (1), exists.

5
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4. Calculation ansatz: the x-representation

The global form of the amplitudes ψ
(1,2)
1,2 , which has been found above, indicates the way to

find the solutions of the problem equation (1) directly in x-representation, which proves to be
an effective calculation procedure. With this goal we introduce the new functions h1,2(ζ ) and
the new variable y according to the equations

h1,2(ζ ) = χ1,2(ζ ) exp(−bζ ), y = ζ − b (40)

and rewrite equation (5) in the form

[�̂ + (a − b)(y + b)]h1(y) − νh2(y) = 0, (41)

�̂h2(y) − νh1(y) = 0, (42)

where �̂ is the second-order differential operator

�̂ = 1

2

d2

dy2
− y

d

dy
+ k − 1 (43)

and the parameter k is introduced according to equation (25).
The system of equations (41) and (42) results in the fourth-order differential equation for

the function h2

Lh2(y) = 0, (44)

where the operator L has the form

L = [�̂ + (a − b)(y + b)]�̂ − ν2. (45)

For the solvable cases we take the solution to equation (44) in the form of an expansion in
Hermitian polynomials Hm(y)

h2(y) =
∑
m

qmHm(y). (46)

Substitution of the expression in equation (46) into equation (44) leads to the following
three-term recurrence relation for the coefficients qm

cm−1qm−1 + bmqm + am+1qm+1 = 0 (47)

with

am = m(m − k + 1)(b − a),

bm = (m − k + 1)(m − k + b2 − ab + 1) − ν2, (48)

cm = (m − k + 1)(b − a)/2.

The properties of the recurrence relation (47) are similar to the properties of relation (16).
Because of the equality a0 = 0, the sum in equation (46) begins from m = 0. At integer
values of parameter k (k � 2), parameter ck−1 = 0 and the sum on the right-hand side of
equation (46) is truncated at m = k − 1 provided that the additional condition is fulfilled

det(m) = 0, (49)

6
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where m is a three-diagonal k × k matrix with the structure exactly the same to that given in
equation (22)

m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 a1

c0 b1 a2

c1 b2

c2 . . .

. . . ak−3

bk−3 ak−2

ck−3 bk−2 ak−1

ck−2 bk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (50)

Because of the equalities ak−1 = 0, bk−1 = −ν2 �= 0, the last column and the last row can be
removed from the matrix m.

For the case k = 2, we obtain the following solutions to equation (49) and recurrence
relation (47):

ν2 = 1 − b2 + ab, q1 = a − b

2ν2
q0. (51)

As a result, the function h2(y) is given by

h2(y) = q0H0(y) + q1H1(y) = q0

(
1 +

a − b

ν2
y

)
(52)

and using equation (42) we immediately get

h1(y) = q0

ν
. (53)

Finally, the wavefunctions ψ1 and ψ2 are obtained in the form

ψ1(ζ ) = q0

ν
exp(−ζ 2/2 + bζ ),

ψ2(ζ ) = q0

ν2
exp(−ζ 2/2 + bζ )[1 + (a − b)ζ ].

(54)

In the diabatic limit ν → 0 (i.e. a → (b2 − 1)/b), the normalized function ψ2 coincides with
the wavefunction of the first excited vibrational level of the diabatic potential ζ 2/2−bζ , while
the normalized function ψ1 approaches zero.

Thus we found the analytical solution for the portion of energy spectrum of the two-
component Schrödinger equation at special values of interaction parameter ν. Ordinarily,
such situations are said to be quasi-exactly solvable [19, 20]. The important feature of the
states found is that they belong to the degenerate levels and, therefore, stand out against the
other ones. We believe that the spectrum of the system considered does not contain any other
degenerate levels. To confirm this statement, the dynamic symmetry of the system should be
analyzed completely and we are planning to work in this direction aiming to find the symmetry
operators which could clarify the origin of degeneration.

5. Conical intersection of vibronic levels

In the three-dimensional space {a, b, ν}, vibronic levels are degenerate along the line

ν = ν(a, b),
b2 − a2

2
= k − k̃ = ω. (55)

Here ν(a, b) is the solution to equation (21). Vibronic levels intersect each other along this
line and form the double cone surface in the vicinity of the intersection. To get the shape of the

7



J. Phys. A: Math. Theor. 42 (2009) 285305 V I Osherov and V G Ushakov

conical intersection in the infinitely close vicinity of degenerate configurations we follow the
up-to-date version of perturbation theory for degenerate levels of Schrödinger operator [21].
We specify the perturbation δĤ in the following matrix form:

δĤ =
(

δaζ, −δν

−δν, δbζ

)
. (56)

Here δa, δb and δν stand for the increments of parameters a, b and ν respectively while moving
away from the degenerate configuration.

Now, we shall find the parameters of the lowest intersection at the energy equation (27)
for the geometrically symmetric case

b = −a, ν(a, b) ≡ ν(a) =
√

1 − 2a2. (57)

As a first unperturbed solution we take the function given by equation (54)

ψ(1) =
(

ψ1(ζ )

ψ2(ζ )

)
. (58)

The second solution can be immediately obtained using the symmetry of the Hamiltonian

ψ(2) =
(

ψ2(−ζ )

ψ1(−ζ )

)
. (59)

Orthogonal solutions Ψ1 and Ψ2 can be obtained as symmetrized combinations of functions
ψ(1) and ψ(2)

Ψ1 = ψ(1) + ψ(2), Ψ2 = ψ(1) − ψ(2). (60)

The normalizing coefficients for these functions, N1 and N2, are equal to the integrals below

N1 =
∫ +∞

−∞
ΨT

1 Ψ1 dζ = 4q2
0

√
πea2

1 − 4a2 + 4a4

(
1 − 2a2 + 2a4 + e−a2

√
1 − 2a2

)
,

N2 =
∫ +∞

−∞
ΨT

2 Ψ2 dζ = 4q2
0

√
πea2

1 − 4a2 + 4a4

(
1 − 2a2 + 2a4 − e−a2

√
1 − 2a2

)
.

(61)

Matrix elements of the perturbation δĤ are given by

δH11 = 1

N1

∫ +∞

−∞
ΨT

1 δHΨ1 dζ

= −aσ +
4q2

0

√
π

(
ea2√

1 − 2a2 + 1
)

A�(1 − 2a2)
wηη, (62)

δH22 = 1

N2

∫ +∞

−∞
ΨT

2 δHΨ2 dζ

= −aσ +
4q2

0

√
π

(
ea2√

1 − 2a2 − 1
)

A�(1 − 2a2)
wηη, (63)

δH12 = δH21 = 1√
N1N2

∫ +∞

−∞
ΨT

1 δHΨ2 dζ

= 8q2
0

√
πea2

a5

√
A�A�(1 − 2a2)2

wττ, (64)

8
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where we introduced the symmetrized increments σ, τ and η

δa = wττ + σ,

δb = wττ − σ, (65)

δν = 2a(1 − 2a2)−1/2σ + wηη,

and the scaling factors wτ and wη

wτ = e−a2

2a5

√
(1 − 2a2 + 2a4)e2a2 − 1 + 2a2, (66)

wη = e−a2
[(1 − 2a2 + 2a4)e2a2 − 1 + 2a2]

2a4(1 − 2a2)
. (67)

The corrections for the vibronic levels in the vicinity of the intersection are the eigenvalues of
matrix δH

δε = δε ±
√

τ 2 + η2, (68)

where

δε = −aσ +
(1 − 2a2 + 2a4)ea2 − e−a2

2a4
(1 − 2a2)1/2η. (69)

That visualizes the double cone shape of the intersection.
The excited level with k = 3 has two degenerate configurations which are defined by two

solutions of equation (49):

ν = 1
2

√
10 − 12a2 ± 2

√
9 + 4a2 + 4a4. (70)

The components ψ1(ζ ) and ψ2(ζ ) of the first unperturbed solution for the wavefunction are
obtained in the form

ψ1(ζ ) = 2q0(ν
2 + 4a2 − 1 + 2aζ )

ν(ν2 + 2a2 − 1)
exp(−ζ 2/2 + bζ ),

ψ2(ζ ) = q0[8a2ζ 2 + (4a2 + ν2)(4aζ + ν2 + 2a2 − 1)]

ν2(ν2 + 2a2 − 1)
exp(−ζ 2/2 + bζ ).

(71)

The normalized solutions, the splitting of degenerate levels and the cone’s shape are calculated
by analogy with the case k = 2, however they are highly tedious.

The characteristic behavior of a few levels for the basic vibronic model calculated
numerically is shown in figure 1. The levels are drawn as a function of the force parameter
b at a fixed value of interaction ν = 0.95, with ω = 0 for thick lines and ω = −2 for thin
lines. The force parameter a is changed as −√

b2 − 2ω. The dashed lines are ε = k − b2/2
for k = 2, 3 and 4. These lines intersect the energy levels in degenerate configurations. In full
agreement with the analytical treatment, the positions of intersections of all levels coincide
with the energy levels of diabatic potentials. In the close vicinity of intersections these levels
coincide with that given by the perturbation theory approach.

The number of degenerate configurations of individual level is equal to the number of
physical solutions of equation (49). This number depends on the value of the interaction
parameter ν. The critical values νi of the parameter ν are given by

νi =
√

(i − k)(i − k + ω), (72)

where

i = 1, 2, . . . , k − 1. (73)

9



J. Phys. A: Math. Theor. 42 (2009) 285305 V I Osherov and V G Ushakov

Figure 1. Energy levels as a function of the force parameter b at a fixed value of interaction
ν = 0.95. a = −√

b2 − 2ω. Thick lines are for ω = 0, thin lines are for ω = −2. Dashed lines
are ε = k − b2/2 with k = 2, 3 and 4.

Figure 2. As figure 1. ω = 0, ν = 1.05.

In particular, for the geometrically symmetric case b = −a, the number of intersections
of levels is changed at integer values of the parameter ν. Comparison of figures 1 and 2
demonstrates the disappearance of degenerate configurations when the parameter ν is changed
from 0.95 to 1.05.

10
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6. Conclusion

The one-dimensional vibronic problem may have degenerate solutions, which are deduced in
this paper in an analytically exact form. The corresponding levels form a harmonic sequence
presenting the conical intersections over the manifold {a, b, ν} in the degeneracy vicinities.
The degeneracy conditions are the resonance displacement of the diabatic potentials and the
special value of interaction generating the dynamic symmetry. These conditions restrict the
conventional semiclassical quantization conditions essentially.

The basis set for degenerate levels is generated by the contours connecting p- and x-
representations that gives rise to the dynamic symmetry group. Finding the group operators
in x-representation will be a worthwhile target for a subsequent study.

The conical intersection parameters found in an exact analytical form as the functions
on the parameters of the molecular system can be used to check the numerically obtained
potential surfaces in the intersection vicinity.
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